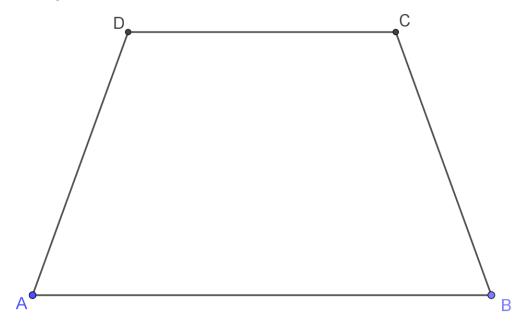
O Gegeben ist das gleichschenklige Trapez ABCD mit $AB \parallel CD$.

Es gilt:
$$\overline{AB} = 12 \text{ cm}$$
; $\overline{CD} = 7 \text{ cm}$; $\triangleleft BAD = 70^{\circ}$



- 1 Berechnen Sie die Länge der Seite [AD] auf zwei Stellen nach dem Komma gerundet.
- Punkte $E_n \in [AD]$ und Punkte $F_n \in [BC]$ sind zusammen mit dem Mittelpunkt M der Strecke [AB] die Eckpunkte von gleichschenkligen Dreiecken MF_nE_n mit den Basen $[E_nF_n]$. Es gilt: $E_nF_n \parallel AB$. Die Winkel BMF_n haben das $Ma\beta \phi$ mit $\phi \in]0^\circ; 63,00^\circ]$.

Zeichnen Sie das Dreieck MF₁E₁ für $\varphi=50^\circ$ in die obige Zeichnung mit ein.

- Zeigen Sie durch Rechnung, dass für die Länge der Strecken $[MF_n]$ in Abhängigkeit von φ gilt: $\overline{MF_n}(\varphi) = \frac{5,64}{\sin(70^\circ + \varphi)} \, \mathrm{cm}.$
- 4 Unter den Dreiecken MF_nE_n hat das Dreieck MF₀E₀ die Schenkel mit minimaler Länge.

Bestimmen Sie die Länge der Strecke $[MF_0]$ und geben Sie das zugehörige Winkelmaß φ an.

- Im Dreieck MF_2E_2 hat die Seite $[MF_2]$ die Länge 6,2 cm. Berechnen Sie das zugehörige Winkelmaß φ auf zwei Stellen nach dem Komma.
- Zeigen Sie durch Rechnung, dass für die Länge der Strecken $[E_nF_n]$ in Abhängigkeit von ϕ gilt:

$$\overline{E_n F_n}(\phi) = \frac{11,28 \cdot \cos \phi}{\sin(70^\circ + \phi)} \text{ cm}.$$

Tipp: Berechnen Sie zunächst die Länge der Strecke $[M_nF_n]$ in Abhängigkeit von φ , wobei die Punkte M_n die Mittelpunkte der Strecken $[E_nF_n]$ sind.

- 7 Unter den Dreiecken MF_nE_n gibt es ein gleichseitiges Dreieck MF₃E₃.

 Berechnen Sie die gemeinsame Seitenlänge dieses gleichseitigen Dreiecks.
- 8 Im Dreieck MF_4E_4 hat die Seite $[E_4F_4]$ die Länge 10 cm. Berechnen Sie das zugehörige Winkelmaß φ auf zwei Stellen nach dem Komma.