Aufgabe

- Gegeben ist die Funktion f mit der Gleichung $y = 1,5^{x+3} + 1$ und die Funktion f' mit der Gleichung $y = -2 \cdot 1,5^{x+1} + 8$ ($\mathbb{G} = \mathbb{IR} \times \mathbb{IR}$).
- 1 Gib zu beiden Funktionen jeweils die Wertemenge an
- Tabellarisiere beide Funktionen für $x \in [-8; 1]$ mit $\Delta x = 1$ auf zwei Stellen nach dem Komma gerundet. Zeichne sodann die Graphen zu beiden Funktionen und ihre Asymptoten in ein Koordinatensystem.

Für die Zeichnung: Längeneinheit 1 cm; $-9 \le x \le 3$; $-3 \le y \le 9$

Punkte $C_n(x | 1, 5^{x+3} + 1)$ auf dem Graphen zu f und Punkte D_n auf dem Graphen zu f 'sind zusammen mit Punkten A_n und B_n Eckpunkte von Rechtecken $A_nB_nC_nD_n$. Die Punkte C_n und D_n haben jeweils die gleiche Abszisse x. Es gilt: $y_{C_n} < y_{D_n}$ und $\overline{A_nD_n} = 2$ LE.

Zeichne die Rechtecke $A_1B_1C_1D_1$ für x=-1 und $A_2B_2C_2D_2$ für x=-4 in das Koordinatensystem zu Teilaufgabe 2 ein.

- 4 Ermittle auf zwei Stellen nach dem Komma gerundet, für welche Belegungen für x es Rechtecke $A_nB_nC_nD_n$ gibt.
- 5 Unter den Rechtecken $A_nB_nC_nD_n$ gibt es das Quadrat $A_3B_3C_3D_3$. Berechnen Sie die x-Koordinate des Punktes C_3 . [Teilergebnis: $\overline{D_nC_n}(x) = (-6,375\cdot 1,5^x + 7)$ LE]
- Berechne die Flächeninhalte der Rechtecke A₁B₁C₁D₁ und A₂B₂C₂D₂ auf zwei Stellen nach dem Komma gerundet.
- 7 Unter den Rechtecken A_nB_nC_nD_n gibt es ein Rechteck A₄B₄C₄D₄ mit dem Flächeninhalt 8 FE. Berechne die x-Koordinate des Punktes C₄.